
. ReportNo.

High Performance Compression of Science Data

2. Government Accession No. 3. Recipient's Catalog NO.

6. Performing Organization Code

). Title and Subtitle 5. Report Date

August 1994

James Storer
Martin Cohn

7. Author(s)

10. Work Unit No.

8. Performing Organization Report No.

9. Performing Organization Name and Address

Computer Science Department
Brandeis University
Waltham, MA 02254-91 10

Universities Space Research Association
10227 Wincopin Circle
Columbia, MD 21 044

2. Sponsoring Agency Name and Address NASA HQ OSSA

17. Key Words (suggested by Author(s))

data compression

11. Conlrad w Grant No.

NAS5-32337 5555-1 1
13. Type of Report and Period Covered

Final 7/91 - 6/94

18. Distribution Statement

unclassified - unlimited

14. Sponsoring Agency Code I

19. Security Classif. (of this report) 20. SeCurily Classif. (of lhis page) 21. No. of pages

unclassified unclassified 16

5. Supplemenlary Notes

22. Price

16. Abstract

Two papers make up the body of this report. One presents a single-pass adaptive vector quantization algo-
rithm that learns a codebook of variable size and shape entries; the authors present experiments on a set of
test images showing that with no training or prior knowledge of the data, for a given fidelity, the compression
achieved typically equals or exceeds thzt of the JPEG standard.

The second paper addresses motion compensation, one of the most effective techniques used in interframe
data compression. A parallel block-matching algorithm for estimating interframe displacement of blocks with
minimum error is presented. The algorithm is designed for a simple parallel architecture to process video in
real time.

- 2 -

0 Image Compression: A paper on our basic single-pass adaptive VQ with variable size
and shaped codebook entries has appeared in the Proceedings of the IEEE. A new paper
was presented at the 1994 IEEE Data Compression Conference that describes the use
of KD-trees for a fast serial implementation that can run on a UNIX workstation. In
addition, this paper describes a number of key improvements to the basic algorithm.
The Computer Science Department at Brandeis University has recently received a 1
million dollar grant from the NSF for the purchase of parallel computing equipment;
part of these funds have already been used to purchase a 4,096 processor MASS-PAR
machine; the remainder was used to purchase a 16-node SGI Challenge machine. We
have been conducting experiments with this machine on practical sub-linear parallel
implementations of the algorithm.

Video Compression: Our work on the basic adaptive displacement estimation algo-
rithm that tracks variable shaped groups of pixels from frame to frame has appeared
in the same issue of the Proceedings of the IEEE as our work on adaptive image com-
pression. In addition, we have submitted for journal publication new work on the
integration of this algorithm into a complete video and image sequence compression
system. We are in the process of compiling extensive experimental results with the
system.

a Parallel Algorithms: Our work on sublinear algorithms for parallel text compression
has been submitted for journal publication. We have conducted experiments with our
new approach to sub-linear text compression that closely approximates optimal com-
pression but is much more practical to implement. Using an extremely simple parallel
model (a linear array where processors can only talk to adjacent neighbors), we have
achieved poly-log time and extremely close approximation to optimal compression. As
parallel computers become more common, algorithms such as this will provide prac-
tical ways to fully utilize the power of these machine in NASA applications involving
large amounts of data.

0 Error Propagation: A paper on our basic error resilient algorithm has been submit-
ted for journal publication. We are continuing our investigation of “error resilient”
systems, and their application to lossy systems.

Appendix: As indicated above, the two papers that recently appeared in the Proceedings
of the IEEE give good summaries of the key work performed under this contract. Attached
are copies of these papers.

I .

- -

I

(a) (b)
Fig. 1. (a) ChestCAT original. (b) &SICAT map. (c) C~CSICAT dictionary.

Evolving
diaionay

Panially encoded image m

1 c3
0 -
0

I
I

Fig. 2. On-line adaptive \:Q.

an overview on adaptive lossless compression, see the book
by Storer [14].

Vector quantization is a lossy method that compresses
an image by replacing subblocks by indices into a djctio-
nary of subblocks. Traditionally. the subblocks are all the
same size and shape and the dictionary must be computed
in advance by “training” on sample data. Not only can
training be computationally expensive, but “full-search”
encoding that is guaranteed to find the closest vector
in the dictionary can also be very time-consuming. In
practice. tree-structured dictionaries are often used. Lin (101
studies the pefiom,an:e-comp!exi:y t-adeeffs for vector
quantization. See Gersho and Gray [9) for an introduction
to vector quantization and references to the literature.

The basic single-pass adaptive V Q algorithm presented
in [4]. [5] is depicted in Fig. 2, which is followed by
Algorithms la and Ib. the Lossy Generic Encoding and
Decoding Algorithms for on-line adaptive vector quanri-
zation. Fig. 1 illustrates the algorithms by showing for
a CAT-scan chest image (Fig. l(a)), a map of how the
compressor covers the image with rectangles (Fig. I(b)),
and a portion of the dictionary (Fig. l(c)) about half-
way through the compression process. The operation of the
generic algorithms is guided by the following heuristics:

Thc Gln~ing Heurisric: The heuristic selects one grow-
ing point GP(2.y.q) from the available pool GPP. All

1) Initialize the local dirrionor). D to have one entry for each pixel
of thc input alphabet and the growing jwinrs pool (GPP) with
(or more) growing poinu.

2) Replat until there arc no more growing points in GPP:

a) ISckcr the n u r growing poinr from GPP:)
Use a growing hrurisrir to choose a growing point GP fm
GPP.

b) I Ger rhr b a r march block b : I
Use a murch heurirric io find a block b : in D that ma tch
with acceptable fidelity h u g e (GP. b :) (the portion of imrp
determined by GP having the same size as 6). Transmit
[logzlDl] bits for the index of b :.

Add each of the blocks specified by a dicrionary updare
heurisrk to D (if D is full. first use a delerion heuristic
IO make space)

c) IVpdure D nnd GPP:]

Algorilhm la: Lossy Generic Encoding Algorithm.

1) llnitialize D and GPP by performing Step 1) of h e encoding
algorithm.]

2) Repeat until there are no more growing points in GPP:
a) I Select the next growing point from GPP: 1

Perform Step ?a of the encoding algorithm to obtain GP.
b) {Get the best match block b :)

Receive [log21Dll bits for the index b. Retrieve b from D
and output b at the position determined by GP.

c) {Update D and GPP: I
Perform Step 2c of the encoding algorilhm

Algorithm Ib: Lossy Generic Decoding Algorithm.

experiments reported here use the wuw heuristic (a ‘‘u’ave
front” that goes from the upper left corner down 10

!ewer rieht comer). Other examples of growing h ~ r i s t i a
include circular (a “ball” that expands outward from he
center), diagonal (a successive “thickening” of the maiD
diagonal), and FIFO (first-in first-out).

The Morch Heurisric: This heuristic decides what block
from the dictionary D best matches imageGP (the P0hm
of <ne image of .ik s m e shape as b defined by *
currently selected growing point GP). A11 expenmend
results reported here use the greedy heuristic (chpose *
largest match possible of acceptable quality. a n t among
two matches of equal size. choose the one of best qua’-
ity). The parameters that guide the matching process a S
The disrance nieasure; we use the standard rnean-squfl
measure in all experiments. The elenienrar> suhhlo~k
I ; large matches can be divided into subblocks of constant

i
ChestCAT: Cat-scan chest image, 512 by 512 pixels, 8

bits per pixel.
BrainMrSide: Magnetic resonance medical image that

shows a side cross-section of a head, 256 by 256 pixels,
8 bits per pixel; this is the medical image used by Gray,
Cosman, and Riskin [GCRSI].

BrainMrTop: Magnetic resonance medical image that
shows a top cross-section of a head, 256 by 256 pixels,
8 bits per pixel.

NASA5: Band 5 of a 7-band image of Donaldsonville,
LA; the least compressible of the 7 bands by UNIX
compress.

NASA6: Band 6 of a 7-band image of Donaldsonville,
LA; the most compressible of the 7 bands by UNIX
compress.

WomanHat: The standard woman in the hat photo, 512
by 512 pixels, 8 bits per pixel.

LivingRoom: Two people in the living room of an old
house with light coming in the window, 512 by 512 pix-
els, 8 bits per pixel.

Fingerprint: An FBI finger print image, 768 by 768 pix-
els, 8 bits per pixel; includes some text at the top.

Handwri t ing: The first two paragraphs and part of
the figure of page 165 of Image and T e d Compres-
sion (Kluwer Academic Press, Norwell, MA) written
by hand on a 10 inch high by 7.5 inch wide piece of
gray stationary scanned at 128 pixels per inch, 8 bits
per pixel; approximately 1.2 million bytes.

Fig. 4. Description of ihe images.

so-called “bounds-overlap-ball” test). If we use the range
[zi - d..q + d] for each dimension 1: of the query block
z (key area). deciding to go left, right, or both ways in
the k-d tree depending on how this range compares with
the partition value vi associated with the currently visited
nonterminal node, we end up by selecting d l potential best
matches (all blocks which meet the distortion threshold on
the key area). no matter what distortion measure we use
as long as it is monotonic in dimension values as well
as in the number of dimensions (conditions required also
by Friedman. Bentley, and Finkel algorithm). An example
of such a measure is the standard L2 (Euclidean) metric.
Although mean-square error does not satisfy this condition,
it is a bit faster to compute (because there is no square root
to compute) and works equally well in practice.
kt US naw coiisidei ihe cornpiexity of our aigorithm

when the k-d tree data structure is employed. Encoding
time is bounded by

where N is the number of pixels in the image. S(D,,: 7n)

is the maximum time to search a dictionary with a
maximum of Dm, entries each with at most m pixels,
Q(.V) is the time to insert and delete for the growing
points queue, and r is the amount of compression (original
size/compressed size). Straightforward implementation of
the growing heuristics we have considered uses O(log (A’))
time by emplo)*ing a heap data structure; however, this time

can be reduced to O(1) by implementing all heuristics in a
manner similar to FIFO. Under ideal assumptions, it can be
shown that the expected time fer range search in k-d trees
is O(1ogn + B), where B is the number of blocks found
(Bentley and Stanat [3], Friedman, Bentley. and Finkel [7]).
If we take S(Dm,: m) IO be O(1og (Dmw)) (which from
our experiments appears to be a reasonable assumption),
the improved encoding time is

under the reasonable assumption that m = O(1og (D m a)) .
In many applications, it may be reasonable to assume that
r is log(D,,,), which brings the encoding time down to
O(2V) time. As before, decoding is essentially table lookup,
and can be done in O (N) time.

Some parameters of the k-d tree should be adjusted by
experimentation with real data or simulation because they
reflect some compromise between time, memory space,
and retrieval quality that is generally dependent on the
application domain. After experimenting with a number of
alternatives we choose the following settings (used for all
the experiments reported in this paper):

Bucket Sire: Maximum 8 blocks per bucket. (We exper-
imented with bucket sizes ranging from 1 to 32.)

Discriminating Dimension: The dimension with the
largest spread of values (computed by estimating the
variance on every dimension of the key. for the 8 blocks
in the bucket). (We experimented with random choice, and
with cyclic choice depending on the level in the tree).

Partition Value: The mean value between all of the
discriminating dimension values in the bucket. (We ex-
perimented with random values which worked relatively
well).

Range: 1.25 *d . (Even thouzh mean-square error does
not satisfy the monotone properties discussed earlier, by
extending the range just a little to [zi- 1.35 *d. si+ 1-25 *d],
the retrieval quality is as good as for full search with an
insignificant increase in search time.)

Number of k-d Trees: Four trees tl. t2.63. and t l , with
the following key sizes and block assignment:

t i has 1 x 1 key and contains blocks of size 1 x R or
n x 1, with n 2 2.
(ti is simply a binary search tree).

n x 2, with n. 2 2.

n x 3, with n 2 3 and

t2 has 2 x 2 key and contains blocks of size 2 x n or

t3 has 3 x 3 key and contains blocks of size 3 x n or

t4 has 4 x 4 key and contains blocks of size m x n,

Regarding the number of trees to use and the key
sizes, since our algorithm is “normalized“ by using 1 x 1
elementary areas (1 = 4 for all experiments reported here),
then using a key of size at least 1 x I , no matter how “good”
a big block is on the rest. if it does not satisfy the distortion
threshold on the key area it will be rejected also by the full
search. Practically, the improvement in selectivity hy using
keys bigger than 4 x 3 does not justify the increase in the

with m, n 2 4.

936 PROCEEDINGS OF THE IEEE. VOL. S2. YO. 6. JUNE 1994

the "activity" in a region Of the i s q e as the ratio between
the variance (to the mean) V and the mean on this
region. From experimentation. we can say that if the ratio
A is smaller than 4%-5%, then the area is smooth and we
use a smaller distortion threshold of 0.4-d for this area;
if 5% < A 5 10% we use an intermediary threshold of
0.6*d, and if .4 > 10% than the area is active and we use
the entire threshold d. Figure 6(a) shows our algorithm on
the WomanHat image. using a constant distortion threshold
at 10-to-1 compression. Figure 6(b) shows the results of
the method described above at 10-to-I compression. For
comparison, Fig. 6(c) shows JPEG at 10-to- 1 compression.
Similarly. Fig. 7(a)-(c) shows the ChestCAT image using
constant distortion threshold at IO-to- 1 compression, the
method described above at IO-to- 1 compression, and JPEG
at 10-to-I compression. In both Figs 6(b) and 7(b), the
visual quality is much improved (especially on smooth
areas such as the shoulder in the WomanHat image and
the smooth pan with the "X" in the ChestCAT image). By
comparison, note that in Fig. 7(c) JPEG is blocky and the
edges are not preserved: however, for WomanHat, Fig 6(b)
and (c) has similar visual quality.

VI. CURREUT RESEARCH
We are currently working on a number of extensions

to the basic approach presented in this paper. First we
are continuing experiments to better understand how
different heuristics affect performance in terms of both
speed and quality. Second, parallel algorithms that run
in neariy O (n) time with O(m) processors are
possible. Third, of interest are formal proofs addressing
compression-fidelity tradeoffs.

REFERENCES

J. L. Bentley. "Multidimensional binary search trees used for
associative searching." Commun. ACM. vol. 18, pp. 509-5 17,
1975.
J. L. Bentley and J. H. Friedman. "Data structures for range
searching." ACM Compur. Sun. .. vol. 11. no. 4. pp. 39744%
1979.
J. L. Bentley and D. F. Stanat. "Analysi; of range sevching in
quad trees."Informar. Process. Lerr.. vol. 3. no. 6. pp. 170-173.
1975.
C. Constantinescu and J. A, Storer. "On-line adaptive vector
quantization with variable size codebook enmes." in Proc.
!EEE D a o Cnmpenrrrrion Conf. (Snowbird, UT, 1993). IEEE
Computer Soc. Press, pp. 3241. -. "On-line adaptive vector quantization with variable size
codebook entries," J. Informar. Process. Monog.. to appear,
1994.

(61 B. V. Dasantl,,, Ed.. Nearest NciRhhor (N,Vi .Vurms: NN
PLIIICI.II Clussificorion Techniques. IEEE Computer Soc. Press,
IY91.

171 1. H. Friedman. J. L. Bentley. and R. A. Finkel. "An algorithm
for tinding best matches in logarithmic expected time," ACM
7i.utrs. .Moth. So rw., vol. 3, no. 3. pp. 209-226. 1977.

[8] R. M. Gray. P. (! Cosman. and E. A. Riskin. "Combining vector
quantization and histogram equalization." in P roc. I&&€ Duio
Compression Conf. (Snowbird, UT, 1991 1. IEEE Computer
SOC. Press. pp. 113-118.

191 A. Gersho and R. M. Gray. Vector Quonrirurion ond Signof
Coniprrssion. Nowell. MA: Kluwer. I99 I .

[101 J. Lin. "Vector quantization for image compression: Algorithms
and performance" Ph.D. dissertation. Computer Science Dep..
Brandeis University. Waltham. MA. 1992.

[I l l C. N. Manikopoulos and H. Sun, "Activity index threshold
classification in adaptive vector quantization." inConf. Proc.
198s Inr. ConJ on Acoustics. Speech. and Sigrral Processing

[IZ] M. H. Overman and 1. van Leeuven. "Dynamic multi-
dimensional data SVUC~URS based on quad- and K-D trees."
Acru Iuformarico. vol. 17. pp. 167-285. 1982.

[131 F. P. Preparata and M. I. Shamos, Computorionol Geometry: An
Inrmdiicrion. New York Springer-Verlag. 1985.

[Id] J. A. Storer. Dora Compression: Merhnds ond Theory.
RockviIlt. MD: Computer Sci. Press. 1988.

tlEEE). pp. 1235-1239. 1988.

Cornel Constantinescu received the M.S.
Diploma in compuier engineering in 1976
from the Polytechnic University of Bucharest.
Bucharest. Rumania.

From 1976 to 1980 he uas a software
engineer at the State Computer Factory and
taught courses in design and use of the Computer
Factory products to help in the expon of
these products (for example. to China). From
1980 to 1990 he was an Assistant Professor
in the Computer Science Department at the

Polytechnic University of Bucharest. He is presently concluding his work
towards the Ph.D. degree at the Computer Science Depanmenl. Bmdeis
Cniversity. Waltham. MA.

1

James A. Storer received the B..4. d e p in
mathematics and computer science from Cornell
University. Ithaca. NY, in 1975. the M.A. degree
in computer science from Princeton University,
Princeton. NJ. in 1977, and the Ph.D. d c p e in
computer science. also from Princeton Univer-
sity. in 1979.

From 1979 to 1981 he was a researcher at
Bell Laboratories. Murray Hill. NJ. In 1981 he
accepted an appointment at Brandeis University.
Waltham. MA, where he is cumntly Professor

of Computer science and a member of the Brandeis Center for Complex
Systems. His research interests include data compression; text. image. and
video processing: parallel computation: computational geometry: W I
design and layout: machine learning: and algorithm design.

Dr. Storer is a member of the ACM and the IEEE Computer Society.

CONSTANTIF~ESCU AND STORER: IMPROVED TECHNIQUES FOR SINGLE-PASS ADAPTIVE VECTOR QUANTIZATION 939

If these areas are small enough, ,,,,ration, zooming. etc.. of
larger objects can be Chely approximated by piecewise
translation of these smaller areas. The goal is to approxi-
mate interframe motion by piecewise translation of one or
more areas of a frame relative to a reference frame. Let
U be an M x N size block of an image and U, be an
(M + 2 p) x ('V + 2 p) size area of a reference (neighboring)
image, centered at the same spatial location as U, where p
is the maximum displacement allowed in either direction
in integer number of pixels. The algorithm requires for
each block a search of the direction of minimum distortion
(DMD), i.e.. of the displacement vector that minimizes
a given distortion function. A possible mean distortion
function between I/ and U, is defined in Jain and Jain [4] as

- A4 -Y

g(u(m. I I - u,(m + i , n + j))). 1

.ti rv D (i . j) = -
m r l n=1

- p < i . j < p

where g (x) is a given positive and increasing distortion
function of 2. The direction of minimum distortion is given
by (ij). such that D (i . j) is minimum.

One problem of this approach is that finding optimal
displacements requires the evaluation of D (i . j) for (2 p +
1) x (2 p + 1) directions'per block. For example. even for
motions up to 5 pixels along either side of the axes a
search of 121 positions per block is required. The solution
proposed in Jain and Jain [4] is to assume that the data are
such that the distortion function monotonically increases
as we move away from the DMD along any direction in
each of the four quadrants. This assumption makes possible
a search procedure for the DMD that is an extension in
two dimensions of the standard logarithmic search in one
dimension (see Knuth [6]) .
In the next section we present a parallel algorithm that

eliminates the need for this assumption and which can
be implemented to run on-line on a practical parallel
architecture.

111. A SPLIT-,MERGE PARALLEL
BLOCK-MATCHISG ALGORITHM
In this section we present a new parallel block-matching

algorithm for displacement estimation based on a split-and-
merge technique taking advantage of the fact that groups
of blocks often move in the same direction (for instance. if
they are part of the same object or part of the background).
The encoding algorithm computes the displacement vec-
tors (in parallel) and sends them in compact form to the
decoder. The decoder receives the data and constructs an
approximate version of the image, which will be corrected
in the next step of the general encoding algorithm.

A. The Model of Compuration
To process frames Of n pixels each, the encoding algo-

rithm employs a f i x fl grid of processors. 1 5 N 5 n,
each having O(n/.v) local memory. Although all of what
we present is well defined when :V << 71. to simplify our

I
I

Fig. 1. Displacement estimation encoder.

presentation we shall assume .V = kn for some 0 < k 5 1
(and here each processor has O(1) local memory). For
decoding we will need only a single processor with O(n)
memory.

Each frame is divided into N rectangular blocks num-
bered in the same way as the processors; we assume that
at time t processor i receives as input block i from the tth
frame. Since each processor corresponds to a block, and
rice versa. from now on we will use the terms processor
and block interchangeably.

The encoding algorithm implies the use of a sequential
conrroller to monitor the execution of the algorithm. The
controller will need O(.V) dynamic memory and will
perform communication operations only with processor 1.
We will identify this controller with processor 1 itself
by allocating to this processor an additional O(,V) local
dynamic memory. The encoder computes the displacement
vectors and transmits them in a compact form to the decoder
on a serial line. Figure i depicts our model of computation.
The input frames come to the frame buffer on a high-speed
communication line, in time proportional to n. The data
flow from the frame buffer to the grid architecture that
performs the search of the optimal displacement for each
block. The communication between the frame buffer and
the grid architecture has to be performed fast enough to
allow the grid time to perform the necessary computation
on the actual frame before receiving the next frame. In
fact. the bold arrow implies that this communication should
be performed either in parallel or on a serial line with
a speed of cn/N pixels per unity of time, where c is a
system-dependent constant. In Fig. 2 is shown a possible
implementation of the frame buffer: embedded into the grid.
The input is pipelined through the processors. At each step
each processor can pass the input to its neighbor and, when
necessary, can simultaneously copy it into its own working
memory.

B. The Encoder Algorirhm

processor at time t computes in parallel the displacement
of the block that it represents (in frame t) with respect to a
search area in frame t - 1. For simplicity we assume that
the size of the search area is exactly 3 x 3 blocks, that is,
for each processor we limit the search area to its adjacent
blocks. Processor i at time t keeps the description of the
block it represented at time t - 1 in the variable block,r(i)

Figure 3 S ~ O W S i k eiicodei dgoiiihiii a i iime i. Each

the necessary operations. The decoder uses O(,V) memory
to decode each frame in O(iV) time.

D. Splits and Displacement Vectors
One of the critical points of the algorithm is the commu-

nication from the encoder to the decoder of the list-ofsplirs.
Le.. of the list of the processors that at time t belonged to
a superblock but no longer do, and of their displacement
vectors. There are two requirements that the list-of-splits
must satisfy: it must be computationally easy to build. and
it must have a concise encoding; otherwise. sending only
one displacement vector for each superblock would not be
convenient because of the necessity of sending also the
list-ofsplirs.

The list-of-splits is dynamically built: In line 2.1 of Phase
2. groups of processors are added to the list. a single
displacement vector per each group. We keep a hash table
of the possible displacement vectors: each time a group
is added to the list we compute the hash value of its
displacement vector and we associate to the corresponding
entry in the table this displacement vector and the list
of the processors in the group. This list begins with the
ID of the smaller processor, then the ID's of the other
processors follow. each coded in terms of the displacement
with respect to the previous one. Because the processors
were pan of the same sirperblock and are still moving in the
same direction, we can expect their ID numbers to be very
close and we can get good compression with this simple
heuristic. When the encoder sends the list-ofsplits. it sends
each nonzero entry in the table.

There might be more than one solution to the computation
in Line 2 of Phase 1. The block examined could match
optimally more than one block in the search area, or else
we may want to consider in the next Phase more than
one direction in which the block can move. in such a
way to have more options when it is time to shape the
superblocks. A way to do this is to save for each block
all the displacement vectors that allow an error less than a
threshold t when the block is matched in the search area.
In this case, in line 1 of Phase 2. the processor sends to
the controller not only a single vector but a list of possible
vectors.

To determine the eventuality of a split, in line 2.1 of Phase
2, the controller shall compute in which of the possible
directions the majority of the processors move. The number
of possible directions is finite and the computation can
be limited in advance by limiting the length of each list
of possible vectors to an appropriately chosen constant
L. Phase 3 is not affected by considering more than
one displacement value per vector in Phase 2: a single
displacement vector per block has been sent in Phase 2,
and now only that vector has to be considered in Phase 3.

E. Implementation on a Pipe
Figure 4 shows how the algorithm can be implemented

on a pipe. The inputs to the pipe are the actual frame and
the previous frame reconstructed by the decoder. The input

Coniroller

Input

Fig. 4. Implementation of the slgorirhm on a pipe architecture.

flows in linear time through all the processors. Each proces-
sor has to construct the search area by using the information
from the previous frame: after O(:V) time every processor
has available both the block it is representing at the current
time and the search area in the previous frame.

The computation involved and the details of the algorithm
are analog to the grid implementation.

Iv. ANALYSIS OF THE ALGORITHM

In this section we analyze the encoder algorithm in terns
of complexity. fidelity. and compression. The analysis is
done for the grid implementation. similar arguments hold
for the pipe implementation.

A. Complesiry
Let N be the number of processors in the grid. where

N = kn for 0 < k 5 1. In Phase 1 lines 1 and 3 involve
direct neighbor communication and take constant time. The
computation involved in line 2 is the most expensive part of
Phase 1. but it still takes constant time. where the constant
depends on the size of the search area. The for loop in line
1 of Phase 2 might seem to involve O (N 2) communication
on a grid architecture: processor 1 has to interact with all
the other processors. If we number the blocks by row and
column this for loop can be easily pipelined as showed in
Fig. 5. Tkefore, p:CCeSSGi I wi!I a!ways inte:act at each
iteration of the loop with an adjacent processor: processor
2, and the loop will take O (N) time. The complexity
of line 2 (2.1-2.5) depends on the number of processor
ID's examined. The superblocks are pairwise-disjoint sets;
therefore, line 2 has a time complexity of O (N) . Line 3
invoives also O j N j rime.

The for loop of line 1 of Phase 3 can be pipelined and
takes O(X). For each vector the coblocks have a constant
size (each processor has at most eight neighbors). therefore.
line 2 has time complexity O(N) .
In fact. the whole algorithm has at each step t a time

complexity O (N) = O(kn) , i.e.. linear in the size of the
input. it is an on-line algorithm.

CARPENTIERI AND SfORER: SPLIT-MERCE VIDEO DISPLACEMENT ESTIMATION 943

I

Sequence

Salesman

.Mountains

Fog

Kids

Pastorale

typical of the head and shoulaer --quences common in
video-telephone applications.

,-orrclrtioa Full Search br l Pull Search br4

Splil Merge bs4 Split .Merge br2
V I V S (~...i... F . . ~)

S t i l S I R : SIZE SSR : SIZE

: 11225 : %m . 444.01 . 3733
22.91 2JJ7dbi n 26ndbi -
19.11 db Z f A d b : *r l4.92db i : = : 931

: 138.96 . 857.03

. : x x , : 931
34.29db 3lUdb i - %.we i -

: M o 931

; n.41 : 69JJl

. 141.08 a 1 w

25.07 db 27JPdbi 2131db i *

: l o a : 931
2279 db ?..Ea *I 17.lOdb : n

, W.71 : 8 9 3 3

Fog
From the motion picture “Casablanca,” the final scene

when Humphrey Bogart and Ingrid Bergman say good-bye
in the fog at the airport. This sequence is composed of 60
frames, 152 x 114. 8 bits per pixel, digitized at a rate of
12 frames per second. There is a considerable amount of
noisy movement due to the foggy background.

Kids
From the motion picture “It’s a Wonderful Life,” it is

one of the first scenes, where kids (the main characters as
children) are sitting at a desk. This sequence is composed
of 100 frames. 152 x 114, 8 bits per pixel, digitized at
a rate of 12 frames per second. There is a fair amount of
movement due to the presence of three characters.

Mountains
From the motion picture “The Sound of Music.” one of

the final scenes, where the main characters are walking in
the mountains. This sequence is composed of 60 frames,
152 x 113. 8 bits per pixel. digitized at a rate of 12
frames per second. The scene involve a noticeable amount
of movement.

Pastorale
From the motion picture “Fantasia.” a scene from the pan

of the movie illustrating Beethoven’s 6th Syimphony. This
sequence is composed of 60 frames, 152 x 114, 8 bits per
pixel, digitized at a rate of 12 frames per second.

We define, as usually, the SNR correlation (in decibels),
between two frames X and Y, of dimension A 4 x .V as

i < .\G< .V

To describe the amount of movement present in each of
the test sequences, Fig. 11 presents for each sequence the
SNR correlation between pair of consecutive frames. On the
Y axis we plot the SNR correlation, in decibels, between
a frame and the previous one, on the X axis the frame
number. We can see, for example, that in the sequence
“Kids” and in the sequence “Mountains” (Fig. 1 l(c). (d))
there is at first a higher amount of movement (the first 20
frames of “Kids” and the first 30 of “Mountains”), and then
a lower amount of motion. Therefore, the graphs show very
low points for the first pa17 of the sequence and then a brisk
increase and a smoother behavior. In the sequence “Kids,”
this is due to the fact that in the first 20 frames the blonde
girl moves from the left comer of the picture and sits down
at the desk while the boy gets closer, then in the rest of the
sequence the two girls and the boy move slightly and chat.
In the sequence “Mountains.” at the beginning people are

Mountains Pastorale

Fig. 11.
SNR (dB) correlation with the previous frame.

Motion in the test sequences. S = frame number; Y =

walking fast to the top of the hill but at the end they slow
down and turn to the mountains.

Figure 12 shows, in a table, the results we have ob-
tained comparing our algorithm to the standard full search
algorithm. The first column of the table identifies the
sequence, the second column reports for each sequence
the average SNR (in decibels) between consecutive frames
as a measure of their correlation. The third and fourth
columns present the results of the comparison between the
full search algorithm and the Split-Merge algorithm for the
test sequences. We have run the full search algorithm with
block size 8 (8 pixels by 8 pixels blocks) and block size
4 (4 pixels by 4 pixels blocks) and we have reported in
the first subcolumns of the third and fourth columns the
average SNR between the original frames and the prediction
obtained. Then we have run our algorithm setting the
parameters in such a way to achieve that same average S N R
and in the second subcolumns we have compared the size
of the predictions, i.e., the number of bytes needed to send
the prediction from the encoder to the decoder assuming no
lossless compression is performed.

As can be seen in Fig. 12, for the same SNR, our
algorithm has in general a noticeable saving in size respect
to the full search algorithm. In the sequence “Fog” the
foggy background produces noisy effects on the segmenta-

(51 S. Kappagantula and K. R. bo, ,..txion compensated predic-
tive coding." in Proc. Inr. Terh. S p p . SPl& (San Diego. CA,
Aug. 1983).

[6] D. E. Knuth. Searching and Sorring vol. 3 ofThe Art of Com-
purer Progrumming.

[7] T. Koga. K. Inuma. A. Hirano. Y. Iijima. and T Ishiguro,
"Motion-compensated i n t e d m e coding for video conferenc-
ing." in lvTC 81. Proc.. Rc. 1981.

181 A. Pun, H. M. Hang, and D. L. Shilling, "An efficient block

Reading, MA: Addison-Welsey, 1983.

_ -
matching algorithm for motion compensated coding," in Proc.

[9] R. Srinivasan and K. R. Rao. "Predictive coding based on
efficient motion estimation." in ICC Proc., May 1984.

ICASSP. pp. 25.4.1-25.4.4, 1987.

Bruno Carpentieri received the "Laurca" de-
gree in computer science from the University
of Salemo. Italy, in 1988. and the M.A. degree

-.

Since 1991 he has been Assistant Professor
of Computer Science (Ricercatore) the Dipar-
timento di Informauca ed Applicazioni at the
University of Salemo. His research interests

include data compression. in panicular video compression and motion
estimation. parallel computing. and theory of computation.

(irnes A. S tonr received the B.A. degree in
mathemalics and computer science from Comell
University. Ithaca. NY. in 1975. the MA. degree
in computer science from Princeton University,
Princeton. NJ. in 1977. and the Ph.D. degree in
computer science, a!so from Princeion Univer-
sity. in 1979.

From 1979 to 1981 he was a researcher at
Bell Laboratories. Mumy Hill. NJ. In 1981 he
accepted an appointment at Brandeis University,
Waltham, MA. where he is cumntly Professor

of Computer Science. chair of the Computer Science Deparunent. and
a member of the Brandcis Center for Complex Systems. His research
interests include data compression: text, image. and video processing:
parallel computation: computational geomeuy: V U 1 design and layouc
machine leaming: and algorithm design.

Dr. Storer is a member of the ACM and the IEEE Computer Society.

CARPENTIERI AND STORER: SRIT-MERGE VIDEO DISPLACEhlENT ESTIMATION 941

